#4499. 「一本通 6.2 练习 3」Goldbach's Conjecture

「一本通 6.2 练习 3」Goldbach's Conjecture

[{"sectionTitle":"题目描述","type":"Text","text":"原题来自:Ulm Local,题面详见:POJ 2262\r\n\r\n哥德巴赫猜想:任何大于 44 的偶数都可以拆成两个奇素数之和。\r\n比如:\r\n$$\r\n\begin{align}\r\n8&= 3 + 5\\\r\n20&= 3 + 17 = 7 + 13\\\r\n42&= 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23\r\n\end{align}\r\n$$\r\n你的任务是:验证小于 10610^6 的数满足哥德巴赫猜想。\r\n","subType":"markdown"},{"sectionTitle":"输入格式","type":"Text","text":"多组数据,每组数据一个 nn。\r\n\r\n读入以 00 结束。","subType":"markdown"},{"sectionTitle":"输出格式","type":"Text","text":"对于每组数据,输出形如 n=a+bn = a + b,其中 a,ba,b 是奇素数。若有多组满足条件的 a,ba,b,输出 bab-a 最大的一组。 \r\n若无解,输出 Goldbach's conjecture is wrong.。","subType":"markdown"},{"sectionTitle":"样例","type":"Sample","text":"","subType":"markdown","payload":["8\n20\n42\n0","8 = 3 + 5\n20 = 3 + 17\n42 = 5 + 37"]},{"sectionTitle":"数据范围与提示","type":"Text","text":"对于全部数据,6lenle1066\\le n\\le 10^6。","subType":"markdown"}]