#2312. NOIP201704跳房子
NOIP201704跳房子
Description
跳房子,也叫跳飞机,是一种世界性的儿童游戏,也是中国民间传统的体育游戏之一。跳房子的游戏规则如下:在地面上确定一个起点,然后在起点右侧画n个格子,这些格子都在同一条直线上。每个格子内有一个数字(整数),表示到达这个格子能得到的分数。玩家第一次从起点开始向右跳,跳到起点右侧的一个格子内。第二次再从当前位置继续向右跳,依此类推。规则规定:玩家每次都必须跳到当前位置右侧的一个格子内。玩家可以在任意时刻结束游戏,获得的分数为曾经到达过的格子中的数字之和。现在小R研发了一款弹跳机器人来参加这个游戏。但是这个机器人有一个非常严重的缺陷,它每次向右弹跳的距离只能为固定的d。小R希望改进他的机器人,如果他花g个金币改进他的机器人,那么他的机器人灵活性就能增加g,但是需要注意的是,每次弹跳的距离至少为1。具体而言,当g < d时,他的机器人每次可以选择向右弹跳的距离为d-g, d-g+1,d-g+2,…,d+g-2,d+g-1,d+g;否则(当g>=d时),他的机器人每次可以选择向右弹跳的距离为1,2,3,…,d+g-2,d+g-1,d+g。现在小R希望获得至少k分,请问他至少要花多少金币来改造他的机器人。
Input Format
第一行三个正整数 n,d,k,分别表示格子的数目,改进前机器人弹跳的固定距离,以及希望至少获得的分数。相邻两个数之间用一个空格隔开。接下来 n 行,每行两个整数 xi 和 si,分别表示起点到第 i 个格子的距离以及第 i 个格子的分数。两个数之间用一个空格隔开。保证 xi 按递增顺序输入。
Output Format
共一行,一个整数,表示至少要花多少金币来改造他的机器人。若无论如何他都无法获得至少 k 分,输出-1。
7 4 10
2 6
5 -3
10 3
11 -3
13 1
17 6
20 2
2
Hint
【输入输出样例说明】花费 2 个金币改进后,小 R 的机器人依次选择的向右弹跳的距离分别为 2,3,5,3,4,3,先后到达的位置分别为 2,5,10,13,17,20,对应 1, 2, 3, 5, 6, 7 这 6 个格子。这些格子中的数字之和 15 即为小 R 获得的分数。
【数据规模与约定】
本题共 10 组测试数据,每组数据 10 分。对于全部的数据满足1 ≤ n ≤ 500000, 1 ≤ d ≤2000, 1 ≤ xi,k ≤ 10^9,|si|<10^5
对于第 1,2 组测试数据,n ≤ 10;
对于第 3,4,5 组测试数据,n ≤ 500
对于第 6,7,8 组测试数据,d = 1